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Abstract. In the present work Artificial Neural Networks (ANN) and a hybridization with the Levenberg-Marquardt method (LM) 
are used for the solution of an inverse mass transfer problem, which is implicitly formulated as an optimization problem, for the 
estimation of parameters associated with the adsorption of biomolecules in resin beds. 

The sensitivity analysis indicates that difficulties may arise in the estimation of one parameter and such situation was 
confirmed by the high value of the standard deviation associated with the estimation of that specific parameter. 

The ANN led in most cases to a good fit between the direct problem solution obtained with the Thomas model and the 
experimental data for lisozyme adsorption, but in the other cases the hybridization ANN-LM yielded an improvement in the solution.  
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1. INTRODUCTION  
 

Due to the relevant applications in the food and pharmaceutical industries, there is a growing demand for the 
formulation and solution of inverse mass transfer problems (Guiochon, 2002, Silva and Santana, 2000). 

Just to give a few examples, Vasconcellos et al. (2003, 2002) Mendes et al. (2005), Folly et al. (2005) and Lage et 
al. (2006) investigated direct and inverse problems related to the solid-liquid adsorption of biomolecules in resin beds or 
stirred tanks, and Lugon and Silva Neto (2002) investigated the gas-liquid adsorption in buble columns. 

In the present work we are interested in the estimation of adsorption isotherms and mass transfer parameters using 
experimental data on the concentration of a given substance (biomolecules) measured at the exit of a resin bed. For the 
direct problem solution we use Thomas model, which provides good results when the effects of axial dispersion are 
negligible in comparison to the other mass transfer mechanisms (Fellinger, 2003). 

For the direct problem solution Thomas’ model is used (Thomas, 1944, Folly et al. 2005), and for the solution of 
the inverse problem, Artificial Neural Networks (ANN) are used (Haykin, 1994, Soeiro and Silva Neto, 2006, Silva 
Neto and Soeiro, 2005, Soeiro et al., 2004, 2004a). 

The experimental determination of adsorption isotherms is an important step for the design of new methods in 
preparative chromatography (Fellinger, 2003), as well as for the scale-up from laboratory to industrial production level 
(Seidel-Morgenstein, 2004). For such task the inverse problem of chromatography has provided the best estimates for 
the isotherm coefficients (Gritti and Guiochon, 2004). 

The inverse problem is formulated implicitly, in which we seek to minimize the norm of the squared residues 
between calculated and measured values of the breakthrough curves, i.e. the time dependent values of the biomolecules 
concentration at the exit of the adsorption column. For the solution of the inverse problem Artificial Neural Networks 
(ANN) are used, as well as a hybridization of ANN with the Levenberg-Marquardt method. It is observed that the 
stochastic method may lead to good solutions by itself, or at least provide good initial guesses for the deterministic 
method. 

The sensitivity analysis which was performed before the inverse problem was solved indicated that difficulties 
could arise in the estimation of one of the parameters of interest.  
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2. DIRECT PROBLEM FORMULATION AND SOLUTION  
 

Consider an adsorption column composed by a fixed bed of adsorbent resins, in which h  represents the column 
length and cA  its cross section. A mobile phase, composed by a diluted solution of the adsorbate of interest 
(biomolecule), percolates through the resin bed (fixed phase). The adsorbate is transferred from the bulk of the solution 
to the vicinity of the resin particles, i.e. mass transfer through the liquid film, and then it diffuses to the interior of the 
particle pores, being then adsorbed by the solid matrix.  

The mathematical model for the chromatography process is based on the mass balance for the two phases; one for 
the mobile phase that flows through the macro scale porous fixed resin bed, and the other for the resin particles 
involving the microscale porous solid matrix (Guiochon and Lin, 2003).  
 
2.1. Direct Problem Formulation  
 

Adsorbent mass balance (fixed phase) A simplified representation of the mass transfer mechanisms in the solid 
phase (Santacesaria et al., 1982) considers a time dependent average concentration iC , and the resistances to the mass 
transfer represented by a global mass transfer coefficient lk . Being the adsorbate concentration in the bulk of the liquid 
phase represented by C , the mass balance in the adsorbent spherical particles is written as 
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where iε  is the particle porosity, iq  is the adsorbate concentration in the solid matrix, and R  is the radius of the 
adsorbent particles. 

The mass transfer rate from the solution to the fixed phase is given by Chase (1984) 
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where q  is the adsorbate concentration, mq  is the maximum adsorbate concentration which the adsorbent may adsorb 
(maximum adsorption capacity), 1k  is the adsorption rate constant and 2k  is the desorption rate constant. Further, the 
dissociation rate constant dk  is defined as  
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Considering a very fast adsorption rate on the surface, an equilibrium can be reached ( )0/ =∂∂ tq , (Silva and 

Santana, 2000), and from Eq. (2) we write 
 

( ) 0*
2

**
1

*
=−−=

∂
∂ qkqqCk

t
q

m    (4)

which leads to the non-linear Langmuir isotherm  
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Replacing ∗C  by iC , we obtain from Eqs. (1) and (5), 
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We consider that at the beginning of the process there is no adsorbate in the resin particles. Therefore, 
 

0=iC   for   0=t     (7)
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Column Mass Balance (mobile phase) A mathematical model which takes into account mass transfer in the liquid 

film, axial dispersion and a constant flow rate is given by (Guiochon and Lin, 2003) 
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where ε represents the bed porosity, axD  the  axial dispersion coefficient, u  the constant linear velocity and x  
represents the axial distance from the entrance of the column, with hx ≤≤0 . 

Using the same assumptions used for the mass balance in the fixed phase, Santacesaria et al. (1982) derived an 
approximation for the last term of Eq. (8) arriving at  
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Here we use the Danckwerts boundary conditions 
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and the initial condition 
 

0=C   for   0=t  , in   hx ≤≤0     (12)
 
2.2. Direct Problem Solution 
 

For the particular case in which the axial dispersion may be neglected, i.e. 0=axD , and the adsorbate inflow is 
constant, i.e. =0C constant, the adsorption problem described in the previous section has an analytical solution (Chase, 
1984, Blanch and Clark, 1997, Rice and Do, 1994) and it was first derived by Thomas (1944). The adsorbate 
concentration in the mobile phase at the exit of the adsorption column, hx = , is given by 
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where   

do kC /1+=σ  (14)
flAhkq cm /1=η  (15)
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fl  is the volumetric flow rate through the column, and the function ),( baJ  is given by 
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where 0I  is the modified Bessel function of the first kind and of order zero. 

The function ),( baJ  may be approximated by an asymptotic series whose two first terms are given by  
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3. INVERSE PROBLEM FORMULATION AND SOLUTION 

 
Following the sensitivity analysis performed by Folly et al. (2005), we are interested in the present work in the 

simultaneous estimation of the vector of unknowns 
 

{ }Tmd qkZ ,=
v

  (19)
 
We consider as experimental data the adsorbate concentration in the liquid phase at the exit of the column, at 
hx = , i.e. NitCC ii

,,2,1),(expexp K== , where N  is the total number of experimental data.  
As the number of measured data, N , is usually much larger than the number of parameters to be estimated, 

2=M , the inverse problem is formulated implicitly as an optimization problem in which we seek to minimize the 
squared residues cost function given by  
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where ( ) ),( ZtCZC icalccalci

vv
=  represents the calculated values of the concentration obtained with Thomas model, and the 

elements of the vector of residues F are written as 
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This formulation is necessary for the solution of the inverse problem with the Levenberg-Marquardt method. As 

will be presented next the construction of an Artificial Neural Network for the solution of the inverse problem requires 
only the knowledge of sets of input parameters { }md qk ,  and the calculated values of the concentration. 

 
Levenberg-Marquardt Method (LM).  The minimization of the cost function )(ZQ

r
 given by Eq. (20) with the 

Levenberg-Marquardt method consists on constructing an iterative procedure that starts with an initial guess 0Z
v

, and 
new estimates are obtained with  
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being the variation nZ

v
∆  calculated from  
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where λ  is the damping parameter, Γ  represents the identity matrix, and the elements of the Jacobian matrix J  are 
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 The iterative procedure of sequentially calculating nZ

v
∆  and 1+nZ

v
 from Eqs. (23) and (22), is continued until the 

convergence criterion 
 

1ε<∆ n
jZ    for Mj K,2,1=  (25)

 
is satisfied, where 1ε  is a small number, say 10-5. The damping factor nλ  is varied during the iterative procedure, such 
that when convergence is achieved its value is close to zero.  

 
Artificial Neural Networks (ANN). In order to solve the inverse mass transfer problem we use here a multi-layer 

perceptron (MLP) neural network (Haykin, 1994, Bishop, 1995). In Fig. 1 is given a representation of the MLP with the 
input and output layers, and one hidden layer, for the solution of the inverse mass transfer problem of determining the 
vector of unknowns Z

r
, given by Eq. (19), from the knowledge of the measured concentrations (breakthrough curve), 
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NiYi ,...,2,1, = . By providing Y
r

 at the input layer we expect that the ANN will provide at the output layer an estimate 

for Z
r

. 
As real experimental data was not available, we generated sets of synthetic experimental data with 
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where 
icalcC  represents the calculated values of the concentration using the exact values of the physico-chemical 

properties, exactZ
v

, which in a real application is not available and we want to determine with the inverse problem 
solution, σ  simulates the standard deviation of the measurement errors, and ir  is a pseudo-random number generated 
in the range [-1, 1]. 

Each neuron j , with HNj ,,2,1 K= , in the hidden layer performs a linear combination of the input values 
provided at the input layer 
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where NiNjw Hji ,...,2,1,,...,2,1,)1( ==  are the weights of the connections between the nodes of the input layer and the 
neurons of the hidden layer, N  is the number of nodes in the input layer, and HN  is the number of neurons in the 
hidden layer. 

The weighted sum jp  given by Eq. (21) is viewed as an excitation to neuron j  of the hidden layer, which 
provides in response 
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where ( ).f  is an activation function. Various choices for the function ( ).f  are possible. 
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Figure 1 – Multi-layer perceptron network with one hidden layer for the inverse mass transfer 
problem. 
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Each neuron k , uNk ,...,2,1= , of the output layer performs a linear combination of the response jq , 

HNj ,...,2,1= , of the neurons of the hidden layer 
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where )2(

kjw , uNk ,...,2,1= , HNj ,...,2,1= , are the weights of the connections between the neurons of the hidden layer 

and the neurons of the output layer, and uN  is the number of neurons in the output layer, which coincides with the 
number of unknowns of the inverse problem. Here we have 2=uN  (see Eq. (19)). 

The weighted sum ks  given by Eq. (29) is viewed as an excitation to neuron k  of the output layer, which provides 
in response 
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where ( ).g  is an activation function. Various choices for the function ( ).g  are possible. 

Combining Eqs. (27-30) we get 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= ∑ ∑

= =

HN

j
kj

N

i
ijikjk wwYwfwgt

1

)2(
0

)1(
0

1

)1()2( ,        uNk ,...,2,1=  (31)

 
Considering available the experimental data NiYi ,...,2,1, = , we observe in Eq. (31) that kt , uNk ,...,2,1= , are 

estimates for the unknowns kZ , uNk ,...,2,1= , obtained by the ANN. But before we can use Eq. (31) we must determine 

the weight parameters )1(w  and )2(w . 
The determination of the weights )1(w  and )2(w  is accomplished by presenting a set of patterns (known input 

exactY
r

 and outputs exactZ
r

) and calculating the weights that provide the best match between the calculated values t
r

 and 

the target values exactZ
r

. The patterns used in this supervised training stage of the ANN were generated by calculating 

the values exactY
r

 from known sets exactZ
r

 with the Thomas’ model described in Section 2.2. 
The presentation of a full set of patterns is denominated epoch. After one epoch is completed the set of patterns is 

presented again, in a different (random) order. After a number of epochs, once the comparison error is reduced to an 
acceptable level over the whole training set, the training phase ends and the ANN is established. Therefore, in our 
inverse mass transfer problem the unknowns Z

r
 (output) can be determined using the experimental data Y

r
 as the inputs 

to the ANN (see Fig. 1) and the simple forward sweep described by Eq. (31). 
One interesting feature associated with the implementation of the ANN for the solution of the inverse problem was 

that in the training phase of the ANN we have corrupted the set of patterns with different levels of noise which led to an 
improvement on the estimated values for the unknowns. 
 
Hybridization ANN-LM.  The deterministic LM may not converge if a poor choice is made for the initial guess 0Z

v
, 

and if it converges it may lead to a local minimum. 
Silva Neto and Soeiro (2003) have used previously a hybridization GA-LM for the solution of inverse problems in 

heat conduction and radiative transfer, in which the stochastic method is used to generate an initial guess for the 
deterministic method. The hybridization ANN-LM has also been used for the solution of inverse radiative transfer 
problems (Soeiro et al., 2004, 2204a, 2006, Silva Neto and Soeiro, 2005) 

The same approach is used in the present work for the solution of an inverse problem mass transfer problem as an 
attempt to estimate the vector of unknowns given by Eq. (19).  
 
 
4. RESULTS AND DISCUSSION  
 

 In Table 1 are presented the physico-chemical and process parameters related to real experiments performed by 
Chase (1984) with the substance lisozyme. 
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Table 1: Physico-chemical and process parameters for Chase’s experiments (1984) with lisozyme. 
Parameter Value 

h  - column height (cm) 10.4 
cA  - column cross section (cm2) 0.785 

fl  - volumetric flow rate (ml/min)  1.0 

0C  - adsorbate concentration at the column inlet 0.1 mg/ml 

mq  - maximum adsorption capacity 14 mg/ml 

dk  - dissociation rate constant  0.025 mg/ml 

1k  - adsorption rate constant 0.20 ml/mg.min 
 
 The values of 1k , dk  and mq  shown in Table 1 were obtained by Chase (1984) using a batch experiment with the 

Langmuir isotherm.  
 In Fig. 1 are shown the sensitivity coefficients for the parameters 1k , dk  and mq  which are defined as  
 

d

calc
dk

calc
k k

tCktX
k

tCktX
d ∂

∂
=

∂
∂

=
)()(,)()(

1
11

and 
m

calc
mq q

tCqtX
m ∂

∂
=

)()(  (32a-c)

 
From Fig. 1 it can be observed that using Thomas model and the experimental data obtained by Chase (1984) for 

lisozyme, it is not possible to estimate 1k . Therefore, in all computations whose results will be presented next it has 
been considered a fixed value min/20.01 ⋅= mgmlk . Difficulties may be observed in the estimation of dk  due to the 
low sensitivity of the model to that parameter, and good estimates may be obtained for the parameter mq . This has been 
confirmed by Folly et al. (2005), as well as by the results obtained with the present work. 

 
                                                                                                                            

                                                                                                    

mqX  

dkX  

1kX  
 

 

 

      

    Figure 1: Sensitivity coefficients with respect to parameters 1k , dk  and mq  Folly et al. (2005). 
 
In Table 2 are shown the results obtained with the ANN method, as well as with the hybridization ANN-LM. It was 

considered a total number of 21 test cases but in Table 2 are shown the results for only four cases. One of the test cases 
selected is related to Chase’s experimental data (Chase, 1984) and the other three represent a broad range of variation of 
the parameters of interest. The level of noise corresponds to the noise artificially inserted in the patterns used for the 
ANN training. The hybridization consists in using the estimates obtained with ANN, ANNZ

v
, as the initial guess for the 

Levenberg-Marquardt method, i.e. ANNLM ZZ
vv

=0 . 
 

Table 2: Estimates for dk and mq  for lisozyme using the ANN method, the hybridization ANN-LM, and Chase’s 
experimental data (1984).  

 
Method   ANN     ANN-LM   

Noise Test-Case dk (mg/ml) mq (mg/ml) Q  [Eq. (20)] dk  (mg/ml) mq (mg/ml) Q  [Eq. (20)] 

1 0.0198 13.2002 2.2083x10-4 0.0200 13.2002 5.9478x10-9 

12 0.0363 14.3002 8.7062x10-6 0.0365 14.2999 6.8471x10-9 

17 0.0445 14.9006 3.1505x10-4 0.0440 14.9004 1.2466x10-7 0% 

21 0.0221 14.0912 0.1237 0.0451 14.2117 0.0211 
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Table 2 (Continuation): Estimates for dk and mq  for lisozyme using the ANN method, the hybridization ANN-LM, 
and Chase’s experimental data (1984).  

 
Method   ANN     ANN-LM   

Noise Test-Case dk (mg/ml) mq (mg/ml) Q  [Eq. (20)] dk  (mg/ml) mq (mg/ml) Q  [Eq. (20)] 

1 0.0214 13.1877 8.6047x10-6 0.0201 13.1896 3.7872x10-4 

12 0.0362 14.3592 5.76924x10-3 0.0369 14.3051 4.9353x10-5 

17 0.0431 14.9810 01.4919x10-2 0.0432 14.8719 2.4697x10-4 1% 

21 0.0395 14.0839 2.2107x10-2 0.0420 14.1108 1.9450x10-2 

1 0.0266 12.2859 0.2019 0.0425 12.9063 4.0347x10-2 

12 0.0346 14.4627 4.4205x10-2 0.0368 14.2971 1.1351x10-3 

17 0.0414 15.0334 5.8851x10-2 0.0438 14.8899 3.0664x10-4 
3% 

21 0.0068 17.5899 0.8705 0.0024 18.8351 1.2038x10-2 
1 0.0192 13.0654 3.8384x10-2 0.0219 13.068 3.5052x10-3 

12 0.0351 13.6334 0.6600 0.0514 14.8187 5.8252x10-2 
17 0.0436 14.5103 0.1661 0.0428 14.8073 1.4931x10-3 

5% 

21 0.0303 14.6805 0.5742 0.0354 14.0803 3.3026x10-2 
1 0.0174 13.9508 0.3892 0.0190 13.2317 1.3382x10-2 

12 0.0374 14.3773 2.3650x10-2 0.0350 14.2682 9.7210x10-3 
17 0.0395 15.0041 5.3445x10-2 0.0443 14.9315 2.7835x10-3 

8% 

21 0.0274 13.9981 4.9931x10-2 0.0438 14.1659 1.9864x10-2 
 
From the results shown in Table 2, when compared to the value shown in Table 1, one observes that indeed the 

estimates for dk  seem to be poor. A much better result is obtained for the estimates for mq . Nonetheless, as both 
parameters dk and mq  are being estimated simultaneously, it is expected that the quality of the estimates for mq  are 
affected by the low sensitivity of the model to the parameter dk . 

The control parameters used in the ANN implementation are shown in Table 3. In this work the Neural Network 
Toolbox of the software MATLAB 6.5.1 (Mathworks, Inc.) was used with the following neuron model in the 
backpropagation network: 17 elements in the input vector (corresponding to the number of points where concentration 
is measured), log-sigmoid (logsig) transfer function between the input layer and the hidden layer (with 34 elements) and 
a linear transfer function (purelin) in the output layer (with 2 elements in the output vector, which are the unknowns of 
the formulated inverse problem). The number of epochs required in the training stage of the ANN varies with the 
convergence goal previously specified which on its turn depends on the test case under consideration.  

 
Table 3: Control parameters used in the ANN method.  

Control Parameter Value 
Output vector ( )uN  2 elements 

Input vector ( )N  17 elements 
Patterns 400  

Goal for convergence from 10-2 up to 10-6 
 
In Figs. 2-6 are shown the corrupted, experimental and calculated breakthrough curves, being the latter computed 

with the estimated values for dk  and mq  obtained with either ANN or ANN-LM and the Thomas model. These results 
were selected because the hybridization ANN-LM led to a better fit of the model to the experimental data. 
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Figure 2: Corrupted, Experimental (Chase, 1984) and calculated breakthrough curves for lisozyme,  
with ANN method and hybridization ANN-LM 

 
(a) Test-Case 17 with 0 % noise in the training set data. (b) Tes-Case 21 with 0 % noise in the training set data. 
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Figure 3: Corrupted, Experimental (Chase, 1984) and calculated breakthrough curves for lisozyme,  
with ANN method and hybridization ANN-LM 

 
(a) Test-Case 17 with 1 % noise in the training set data. (b) Test-Case 21 with 1 % noise in the training set data. 
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Figure 4: Corrupted, Experimental (Chase, 1984) and calculated breakthrough curves for lisozyme,  

with ANN method and hybridization ANN-LM 
 

(a) Test-Case 1 with 3 % noise in the training set data. (b) Test-Case 21 with 3 % noise in the training set data. 
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Figure 5: Corrupted, Experimental (Chase, 1984) and calculated breakthrough curves for lisozyme,  

with ANN method and hybridization ANN-LM 
 

(a) Test-Case 12 with 5 % noise in the training set data. (b) Test-Case 21 with 5 % noise in the training set data. 
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Figure 6: Corrupted, Experimental (Chase, 1984) and calculated breakthrough curves for lisozyme,  
with ANN method and hybridization ANN-LM 

 
(a) Test-Case 12 with 8 % noise in the training set data. (b) Test-Case 21 with 8 % noise in the training set data. 

 
 

5. CONCLUSIONS 
 
In the present work it is observed that the hybridization of a deterministic (LM) with an stochastic (ANN) method 

may lead to a better fit of a model used for the direct problem solution to real experimental data available for a mass 
transfer problem involving solid-liquid adsorption. Nonetheless, the sensitivity analysis performed before the inverse 
problem is solved shows that difficulties may arise in the estimation of one mass transfer parameter, the dissociation 
rate constant dk . 

The estimates for the maximum adsorption capacity, mq , are much better, but it may be affect by the poor 
sensitivity of the direct model to the parameter dk . 

In a future work the authors will investigate the estimation of parameters dk  and mq  separately. 
As the direct problem solution is analytical, and very fast to compute, the approach described in the present work 

for the solution of the inverse mass transfer problem is not computationally intensive, and therefore CPU time 
requirement is not an issue. 
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